Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Biospektrum (Heidelb) ; 26(6): 624-627, 2020.
Article in German | MEDLINE | ID: covidwho-1384643

ABSTRACT

The COVID-19 pandemic highlights the need for fast and simple assays for nucleic acid detection. As an isothermal alternative to RT-qPCR, we outline the development of a detection scheme for SARS-CoV-2 RNA based on reverse transcription recombinase polymerase amplification (RT-RPA) technology. RPA uses recombination proteins in combination with a DNA polymerase for rapid amplification of target DNA at a constant temperature (39-42 °C) within 10 to 20 minutes and can be monitored in real-time with fluorescent probes.

2.
Anal Chem ; 93(4): 2627-2634, 2021 02 02.
Article in English | MEDLINE | ID: covidwho-1065766

ABSTRACT

In March 2020, the SARS-CoV-2 virus outbreak was declared as a world pandemic by the World Health Organization (WHO). The only measures for controlling the outbreak are testing and isolation of infected cases. Molecular real-time polymerase chain reaction (PCR) assays are very sensitive but require highly equipped laboratories and well-trained personnel. In this study, a rapid point-of-need detection method was developed to detect the RNA-dependent RNA polymerase (RdRP), envelope protein (E), and nucleocapsid protein (N) genes of SARS-CoV-2 based on the reverse transcription recombinase polymerase amplification (RT-RPA) assay. RdRP, E, and N RT-RPA assays required approximately 15 min to amplify 2, 15, and 15 RNA molecules of molecular standard/reaction, respectively. RdRP and E RT-RPA assays detected SARS-CoV-1 and 2 genomic RNA, whereas the N RT-RPA assay identified only SARS-CoV-2 RNA. All established assays did not cross-react with nucleic acids of other respiratory pathogens. The RT-RPA assay's clinical sensitivity and specificity in comparison to real-time RT-PCR (n = 36) were 94 and 100% for RdRP; 65 and 77% for E; and 83 and 94% for the N RT-RPA assay. The assays were deployed to the field, where the RdRP RT-RPA assays confirmed to produce the most accurate results in three different laboratories in Africa (n = 89). The RPA assays were run in a mobile suitcase laboratory to facilitate the deployment at point of need. The assays can contribute to speed up the control measures as well as assist in the detection of COVID-19 cases in low-resource settings.


Subject(s)
COVID-19/diagnosis , Real-Time Polymerase Chain Reaction/methods , Recombinases/metabolism , SARS-CoV-2/isolation & purification , COVID-19/virology , Humans , Sensitivity and Specificity
4.
Clin Chem ; 66(8): 1047-1054, 2020 08 01.
Article in English | MEDLINE | ID: covidwho-209847

ABSTRACT

BACKGROUND: The current outbreak of SARS-CoV-2 has spread to almost every country with more than 5 million confirmed cases and over 300,000 deaths as of May 26, 2020. Rapid first-line testing protocols are needed for outbreak control and surveillance. METHODS: We used computational and manual designs to generate a suitable set of reverse transcription recombinase polymerase amplification (RT-RPA) primer and exonuclease probe, internally quenched (exo-IQ), sequences targeting the SARS-CoV-2 N gene. RT-RPA sensitivity was determined by amplification of in vitro transcribed RNA standards. Assay selectivity was demonstrated with a selectivity panel of 32 nucleic acid samples derived from common respiratory viruses. To validate the assay against full-length SARS-CoV-2 RNA, total viral RNA derived from cell culture supernatant and 19 nasopharyngeal swab samples (8 positive and 11 negative for SARS-CoV-2) were screened. All results were compared to established RT-qPCR assays. RESULTS: The 95% detection probability of the RT-RPA assay was determined to be 7.74 (95% CI: 2.87-27.39) RNA copies per reaction. The assay showed no cross-reactivity to any other screened coronaviruses or respiratory viruses of clinical significance. The developed RT-RPA assay produced 100% diagnostic sensitivity and specificity when compared to RT-qPCR (n = 20). CONCLUSIONS: With a run time of 15 to 20 minutes and first results being available in under 7 minutes for high RNA concentrations, the reported assay constitutes one of the fastest nucleic acid based detection methods for SARS-CoV-2 to date and may provide a simple-to-use alternative to RT-qPCR for first-line screening at the point of need.


Subject(s)
Betacoronavirus/genetics , Coronavirus Infections/diagnosis , Nucleic Acid Amplification Techniques/methods , Pneumonia, Viral/diagnosis , RNA, Viral/metabolism , Betacoronavirus/isolation & purification , COVID-19 , Coronavirus Infections/virology , DNA Probes/chemistry , DNA Probes/metabolism , Exonucleases/metabolism , Humans , Pandemics , Pneumonia, Viral/virology , Point-of-Care Testing , Real-Time Polymerase Chain Reaction , SARS-CoV-2 , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL